Learning a nonlinear dynamical system model of gene regulation: A perturbed steady-state approach

نویسندگان

  • Arwen Vanice Bradley
  • Ye Henry Li
  • Bokyung Choi
  • Wing Hung Wong
چکیده

Biological structure and function depend on complex regulatory interactions between many genes. A wealth of gene expression data is available from high-throughput genome-wide measurement technologies, but effective gene regulatory network inference methods are still needed. Model-based methods founded on quantitative descriptions of gene regulation are among the most promising, but many such methods rely on simple, local models or on ad hoc inference approaches lacking experimental interpretability. We propose an experimental design and develop an associated statistical method for inferring a gene network by learning a standard quantitative, interpretable, predictive, biophysics-based ordinary differential equation model of gene regulation. We fit the model parameters using gene expression measurements from perturbed steady-states of the system, like those following overexpression or knockdown experiments. Although the original model is nonlinear, our design allows us to transform it into a convex optimization problem by restricting attention to steady-states and using the lasso for parameter selection. Here, we describe the model and inference algorithm and apply them to a synthetic six-gene system, demonstrating that the model is detailed and flexible enough to account for activation and repression as well as synergistic and self-regulation, and the algorithm can efficiently and accurately recover the parameters used to generate the data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of strict Lyapunov function for nonlinear parameterised perturbed systems

In this paper, global uniform exponential stability of perturbed dynamical systems is studied by using Lyapunov techniques. The system presents a perturbation term which is bounded by an integrable function with the assumption that the nominal system is globally uniformly exponentially stable. Some examples in dimensional two are given to illustrate the applicability of the main results.

متن کامل

Estimation of the Domain of Attraction of Free Tumor Equilibrium Point for Perturbed Tumor Immunotherapy Model

In this paper, we are going to estimate the domain of attraction of tumor-free equilibrium points in a perturbed cancer tumor model describing the tumor-immune system competition dynamics. The proposed method is based on an optimization problem solution for a chosen Lyapunov function that can be casted in terms of Linear Matrix Inequalities constraint and Taylor expansion of nonlinear terms. We...

متن کامل

A Dissipative Integral Sliding Mode Control Redesign Method

This paper develops a new method of integral sliding mode control redesign for a class of perturbed nonlinear dissipative switched systems by modifying the dissipativity-based control law that was designed for the unperturbed systems. The nominal model is considered affine with matched and unmatched perturbations. The redesigned control law includes an integral sliding-based control signal such...

متن کامل

A Dynamical System Approach to Research in Second Language Acquisition

Epistemologically speaking, second language acquisition research (SLAR) might be reconsidered from a complex dynamical system view with interconnected aspects in the ecosystem of language acquisition. The present paper attempts to introduce the tenets of complex system theory and its application in SLAR. It has been suggested that the present dominant traditions in language acquisition research...

متن کامل

Analytical Solution of Steady State Substrate Concentration of an Immobilized Enzyme Kinetics by Laplace Transform Homotopy Perturbation Method

The nonlinear dynamical system modeling the immobilized enzyme kinetics with Michaelis-Menten mechanism for an irreversible reaction without external mass transfer resistance is considered. Laplace transform homotopy perturbation method is used to obtain the approximate solution of the governing nonlinear differential equation, which consists in determining the series solution convergent to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012